0

Quick And Easy Fourth Of July Recipes

Working out is important, we all know that by now. But when you go to the gym, do you workout with a purpose and a plan? Or do you just tromp ham joint bbc there and grind away on whatever equipment happens to be free at the moment?

Heat you gas grill to a medium heat, utilizing the heating elements on both sides but not the center. This will provide indirect heat for the cooking ham in a crock pot, which will allow for even cooking without drying out the ham. Place the ham on the center of the cooking rack and close the gas grill lid. Cook until the ham reaches an internal temperature of 130 degrees F. You will need a probe thermometer for this; there is no other way to accurately measure the internal temperature and be sure the meat is safe to consume.

What makes this seven layer bean dip different is everyone gets their own serving in a plastic cup. Set out cooking ham an ounce clear plastic cup for each person. Fill the bottom with about an inch of shredded lettuce, it will compress as the other ingredients are added and won’t take up as much space. Add chopped tomatoes and a one inch thick layer of refried beans patted down so it’s evenly covers the tomatoes. Layer on slices of avocado or guacamole, a couple of tablespoons of your favorite prepared salsa, topped with a few tablespoons of sour cream and a covering of shredded cheese. Cover with plastic wrap and refrigerate. Serve with an individual bag of corn chips for each person and fork to get every morsel. Keep a few extra bags of chips on hand.

If this is your first holiday since your divorce, you may be feeling very sad about not having your children with you over the entire holiday like you are used to. Your anger at your ex-spouse may be a little more intense right now because this is a touchy subject for everyone. What will you do when your children are with your ex-spouse? How are your traditions going to be different?

C@ffeine is kid friendly you can bring your year old in and let him explore A christmas ham parent can come in sit down and relax and let their kids play with the owner’s children and no one will kick you out! The owners, Nichole and Adam Clampet, usually have their own children at the shop, playing and having a good time greeting customers.

One serving of Perfect Blend Best One Yet Deluxe Shells And Cheese has 325 calories in it. 120 of those calories are from fat. It has 12 grams of total fat, 3 grams of saturated fat, 2 grams of trans fat, 8 mg’s of cholesterol, 748 mg’s of sodium, 50 grams of total carbs, 3 grams of fiber, 4 grams of sugars and 12 grams of protein. This dish also has vitamin A, iron and calcium in it. This product does contain wheat, soy and milk ingredients.

Meat and eggs which might be consumed within the first part of the method, boost your cholesterol risk, for that reason it is far better to not eat egg yolks and decide on fish rather than meat. Phase 1 becoming very low in fiber; constipation danger is actual danger, if you have issues, contemplate taking a laxative at night. As with any diet, the risks of mineral deficiencies do exist. It’s advisable to ask your doctor in case you need to take any further vitamins and mineral supplements as element of your diet. At the extremely least it is advised that in the event you aren’t already taking a every day multivitamin, which you should begin taking one.

0

A Wine Lover’s Weekly Review Of $10 Wines – A California Old Vines Zinfandel

This is my first 2009 ten dollar wine review. I took advantage of the holiday season to resume my reviews of pricier French and German wines. I have been drinking Canadian wine for decades and it has been getting better over the years. But I have never reviewed a Canadian wine until now. Even if the wine proves to be a disaster, I’ll be reviewing more. But I can’t promise you when.

Our grandmothers knew how to manage a frugal, yet efficient and productive home — and they didn’t need expensive gadgets either! Many slow cookers sell in the range of to and the cost is soon easy beef stew made up by the thriftiness of eating at home.

So how do we get ourselves simple beef stew to take that sometimes uncomfortable step into a more interesting herb and spice zone? Begin by just being open to an “herbalish, spicy experience,” then be on the lookout for a spark of inspiration.

Key Lime Pie is the perfect way to top off your St. Patrick’s Day dinner. Simply mix a 14-ounce can of sweetened condensed milk with 4 eggs and 1/3 cup of lime juice and pour it into a prepared graham cracker crust. Bake it for 15 minutes at 350 degrees. Then, decorate the sides with thin chocolate cookie wafers and top with a peeled and sliced kiwi.

Ixnay on: Unwieldy Sandwiches. Instead of a big sandwich, I used to make two or three mini sandwiches on small potato rolls. They were easy to eat and you can vary the fillings. Your child also can scarf one down between classes if they are hungry (see also, “Mid-Morning Slump,” below).

There are a few ingredients that make my beef stew scrumptious enough to come back to time and time again. How did I come across these ingredients? They were definitely not handed to me from an all natural, gluten-free recipe box. This one required blood, sweat, and tears. Countless failed recipes and years of trying to experiment finally produced this mouthwatering recipe.

The final meal was simple easy crockpot beef stew and chicken meatballs slow cooked together with soft wheat. Now I tasted leather, chocolate, and pepper. The wine was more complex than can usually be expected in this price range. But at the end it was thin and somewhat sour. I tasted it with a high-quality, French style, very buttery and lemony lemon pie right out of the freezer. Get this, the wine tasted of cherries.

Clean up is easy! It has removable stoneware that is dishwasher safe or can be washed in the sink. Be careful not to burn your hands when removing the inner stoneware. It can get very hot. Turn it off, unplug it and let it cool before cleaning. Be sure to keep the power cord away from water. After cleaning, it’s easily stored in a cabinet or on a shelf. It can be left out on a counter top until it’s used again.

The easy beef stew no browning casual, clean, and inviting, and our service was great. After walking all over Dublin, our experience at the Bull & Castle was a wonderful way to relax and unwind for a few hours.

0

Rifleman Radio is indispensable

When the army are on the battlefield, the equipment that they carry and the weight of it is paramount. Most two way radios are one of two things, light and easily breakable, with limited power, meaning limited range or heavy and the opposite to the above, Robust and able to transmit at a lengthy distance. The current development for a 2 channel that’s able to receive and transmit voice and data is an interesting concept. This article, that can originally be found here, give you more of the story.  

Nearly two years after the award of the Rifleman Radio contract, I made an appeal for new thinking by both the defense acquisition corps and the defense industry that now bears repeating.

Twenty-two months ago, the need for the Rifleman Radio was obvious as it is today. It provides infantry units with a relatively small and lower cost software-defined radio capable of transmitting voice and data, such as maps, images and texts. The technology that defines this “workhorse” tactical radio was continuing to mature, resulting in today’s Rifleman Radio being far more reliable and capable than the LRIP-ordered radios from even three years ago.

This maturation process was being driven by ongoing investments in radio technology made by the defense industry, including Thales and Harris Corporation, the two companies selected by the Army to build the Rifleman Radio.

At that time, I noted that success in the Defense Department’s new “Non-Developmental Items” or NDI strategy for the Army’s HMS program would require three things:

  • People. Bringing the right people together from three key groups for meaningful engagement: those defining the capabilities; those acquiring the capability for the government and industry; and those who have to deliver the capability to the Warfighter.
  • Dialogue. Creating ethical opportunities for face-to-face discussions with industry (not RFI dialogues) about the state of technology innovation and what is feasible to provide in a reasonable time and at a reasonable price.
  • Strategy. Building a shared understanding that this new NDI marketplace for tactical radios that requires industry to invest their own money to develop products will be one that delivers greater and greater capabilities over time, in other words, iteratively.

Where are we now? 

The Army is currently working to develop requirements for a 2-channel variant of the Rifleman Radio, a significant step in the Rifleman’s continuing evolution. The fundamental 2-channel communications capability — whether handheld or manpack variants — represents the future of tactical communications.

Two-channel capabilities for the small-unit leader radio like the Rifleman will meet the Army’s evolving tactical communications needs, with its ability to receive and transmit voice and data simultaneously, passing data to and from command to the unit.

The 2-channel Rifleman Radio will provide new capabilities without adding weight from extra radios and batteries. In short, it will provide the capability of two radios without burdening troops with lugging around two radios.

Viewed from a technical perspective, however, a 2-channel handheld radio represents an exponential leap in terms of complexity — it bears no relationship to the notion of “fusing two 1-channel radios together.”

Even the 2-channel HMS Manpack represents a tremendous technological leap forward, though it came with fewer space, size, power and weight limitations than the much smaller handheld Rifleman undoubtedly will. In short, the 2-channel Rifleman Radio will be a tall mountain to climb.

The future Rifleman 2-channel

The 2-channel Rifleman is an achievable reality, however, and speaking for Harris, we’re already well on the way to delivering this capability. The U.S. Special Operations Command (SOF) Tactical Communications (STC) 2-channel handheld radio being developed by Harris for special operations forces is leading the way to this future.

The STC radios are able to operate in the harshest environments and are specially designed to meet rigorous requirements. The STCs are small, lightweight, multiband and multifunction, with multi-mission capability to enable SOF teams to communicate over multiple channels simultaneously.

The Harris STC will provide the ability to receive ISR full-motion video and signals-based threat information. These handheld radios also will have built-in backward interoperability to communicate over legacy networks, and will be upgradable to integrate new capabilities as requirements evolve.

Although the Army’s requirements are still coming together, the 2-channel Rifleman most likely will trade fewer features for less cost. That said, there are many technical attributes related to the 2-channel capability that are likely to be applied from the Harris STC to the next iteration of the Rifleman.

The important takeaway here is that the Army’s continued commitment to evolving tactical communications has led industry to sustain its investment in advancing capabilities — and that formula has brought the 2-channel handheld much closer to reality.

Whether it is the STC or 2-channel Rifleman, the coming wave of new communication capabilities are the result of persistent innovations in myriad radio components: chip design, software, battery life, power consumption and antennas, to name a few.

As I pointed out in January 2015, the development of the Rifleman Radio would represent just the first iteration in the Army’s modernization of tactical radios ― a commitment that would deliver even more revolutionary capabilities over the next decade. But this will only happen if the Army maintains its end of the bargain by assuring industry that ongoing investments would be rewarded with purchases of the end products.

If BBP 1.0, 2.0 and 3.0 continue to be nurtured and “take root,” these radio technology capabilities will continue to evolve with each measured investment making possible continuing progress. Such an active NDI marketplace will ensure industry remains committed to R&D — and the beneficiary of this healthy dynamic is the warfighter.

0

Occupational health effects linked to terrestrial trunked radios (TETRA)

Tetra has been the main stay for the Emergency services for over 10 years and it has been a used by other industries for longer than that. There has been plenty of time for health concerns to be brought up and as the technology is similar to mobile phone, which has been around for 20+ years and radio communications (walkie talkies) for much longer than that, and no really hard evidence has ever been brought that either of these two cause health issues, this article probes the possibilities of TETRA causing health concerns, see what they uncover below.

The use of terrestrial trunked radios (TETRAs) has raised concerns about health and sickness absence. Jackie Cinnamond looks at the evidence for a precautionary approach.

The British police and the other emergency services use a communication system involving technology called TETRA (terrestrial trunked radio), which is halfway between a mobile phone system and a walkie-talkie.

At one NHS trust during the autumn of 2013, it was noted that there seemed to be a correlation between increasing levels of sickness absence in ambulance staff and the recent introduction of TETRAs.

This assumed association was based upon clinical presentations of cases being seen in occupational health practice involving ambulance service employees, who maintain that their portable radio handsets are causing them to experience adverse health effects.

TETRA is the leading public safety radio communications system worldwide, and serves to enhance the function of almost 500,000 police, ambulance and firefighting employees (Airwave solutions, 2012; Motorola, 2007).

The Government commissioned TETRA in 2005 at a cost of £3 billion. It did so in response to concerns raised by the Police Federation regarding the use of a two-way radio communication system and its link with breast cancer in female operatives (Police Federation News, 2005).

The use of TETRAs was contentious due to similar health fears raised by the Health Protection Agency and its working group of 2001. Consequently, the Airwave Health Monitoring Study started in 2009 and the findings are due to be released in 2018 (Imperial College London, 2009). This long-term, observational study is investigating health outcomes of TETRA users within the police force.

Initial concerns were raised by Lancashire police after it was introduced, when almost 200 police officers began to experience symptoms of nausea, malaise, head pain, insomnia, skin complaints and two cases of oesophageal cancer (Farrell, 2002; Police Federation News, 2005).

Comparably, these symptoms correlate with reports of symptoms experienced by the ambulance employees within this trust, soon after the TETRA system was purchased, and which could be associated with electromagnetic radiation emitted by this technology.

Technical issues related to TETRAs

Radiation is a source of energy produced during atom separation. The process of ionisation results in the addition, or removal, of one or more electrons from an atom or molecule.

The force of the electromagnetic energy waves released during separation are categorised as either non-ionising, where the energy released is insufficient to ionise matter, or ionising radiation, where adequate energy is present to ionise matter (Tillman, 2007).

Ionising radiation is associated with the X-ray process; and non-ionising radiation is associated with the transmission and receipt of mobile telecommunication signals (IEGMP, 2000).

Electromagnetic fields are quantified by their wavelength, and the frequency at which the wave pulsates (Sanchez, 2006).

The wavelength frequencies are expressed in Hertz (Hz) and oscillate within a spectrum where one Hz is one oscillation per second, and one kiloHertz (kHz) is 1,000 Hz. Radios using 16-17Hz should be avoided as these frequencies are known to adversely affect health. TETRAs operate at a frequency of 17.6Hz

Potential implications for health

Mobile telecommunication devices are a cause of contention. The health effects associated with their use remain unproven (Kundi, 2009). Human stem cells are more susceptible to electromagnetic fields compared with differentiated human primary cells. The constraining influences of electromagnetic fields upon DNA regeneration in human stem cells could manifest itself in the development of abnormalities within the DNA replication process. Consequently, the initiation of cancer may result (Valberg et al, 2007).

With an estimated 500,000 emergency service employees currently using TETRA systems, if a causal relationship between the use of portable radio handsets and cancer development was subsequently established, then this could present a significant OH and public health challenge (Health Professionals Council, 2011; Dhani, 2012).

Current research

The incessant proliferation of wireless telecommunications technology use has intensified public fears and generated international debate regarding the chances of cancer developing as a direct consequence of exposure to electromagnetic fields emitted from devices such as mobile phones (Kundi, 2009).

Research findings accumulated over the past decade suggest a causal relationship between electromagnetic exposure through the use of wireless telecommunication systems and cancer development (Levis et al, 2011). Conflictingly, current research results conclude that there is insufficient evidence, or none at all, to suggest that acceptable electromagnetic frequencies emitted through mobile phone use can cause adverse health conditions or cancer (Kundi, 2009).

However, the majority of current research studies are sponsored by the telecommunication industry and, therefore, findings tend to significantly underestimate cancer risk. The overall accumulation of research findings, regardless of study design imperfections and financial bias, leans towards the opinion that there is an increased likelihood of a causal relationship between mobile phone use and cancer (Kundi, 2009; Levis et al, 2011).

Legislation related to TETRAs

Although most technology poses some level of risk to human health, such threats must be measured precisely and dependably (Levis et al, 2011). Presently, two international organisations – the International Commission on Non-Ionising Radiation Protection (ICNIRP) and the National Radiological Protection Board (NRPB) – have produced guidelines for limiting exposure to electromagnetic fields within the UK and the European Union (EU).

The ICNIRP (1998) recommendations have been integrated into the European Council Recommendations (1999) and have subsequently been incorporated into statute in Germany (WHO, 2011).

Limits for human exposure to electromagnetic fields have been set accordingly by the ICNIRP and the NRPB (1993) at between 10 and 300 GHz. However, the ICNIRP guidelines have established an upper limit for occupational exposure that is five times higher in employees than it is in the general public (IEGMP, 2000). The exposure limit values are referred to as “basic restrictions” and are based upon specific absorption rate (SAR), which equates to the rate at which the body absorbs energy in relation to each unit of body tissue (WHO, 2011).

Precautionary principles for TETRA use

In the absence of accurate guidance and methods for measuring exposure levels, the robust research evidence that establishes a causal link between electromagnetic exposure and cancer should be acknowledged and precautionary principles implemented (Hardell et al, 2005).

Precautionary principles with regard to electromagnetic radiation are defined by Valberg et al (2007) as implementing a safety-conscious approach prior to a significant causal link between electromagnetic fields and cancer development being established. The idea behind introducing precautionary principles is to try to reduce the degree of public concern regarding the potential health implications of exposure to electromagnetic fields (Wiedeman and Schutz, 2005).

However, the implementation of precautionary principles would be subjected to a cost-benefit analysis and, therefore, would be measured against what the populace deems financially equivalent to the cost of similar risks to society (Australian Radiation Protection and Nuclear Safety Agency, 2001).

Furthermore, their implementation may adversely increase the publics perception of risk and induce a psychosomatic-related development of adverse health problems and proceed to over burden already stretched resources unnecessarily.

However, the Bioinitiative Working Group (2012) contends that the public health approach to addressing exposure to electromagnetic fields should be viewed in the same regard as passive smoking and established on the current scientific evidence accessible.

Implications for OH

Despite the health risks associated with electromagnetic field exposure, the National Policing Improvement Agency continues to emphasise to its employees that the only adverse health effects of electromagnetic fields are established through tissue heating at significant levels.

It also discredited the accounts of the symptoms experienced by employees as psychosomatic conditions (Farrell, 2002; Police Federation News, 2005).

However, Kundi (2009) affirms that the carcinogenic effects of electromagnetic fields over a prolonged latency period are equivalent to the same intensities for smoking-related cancers. Furthermore, the latency period for cancer development is estimated to be 10-30 years. This raises concerns regarding the increased age of retirement, because occupational health departments could potentially have to adapt to accommodate older workers who have been subjected to long latency periods of electromagnetic exposure and its associated health conditions.

The Global Occupational Health Network (2006) advocates that staff undertaking occupational roles with a potential carcinogenic risk should be properly educated and instructed about the appropriate precautionary measures for working with carcinogens, in accordance with health and safety protocols.

The duty of care under s.2 of the Health and Safety at Work etc Act (1974) requires employers to implement what is reasonably practicable to safeguard the health and safety of their employees through the establishment of safe systems of work, and to ensure that staff are adequately informed regarding any potential hazards.

The Independent Expert Group on Mobile Phones maintains that a precautionary approach to the use of mobile phones be adopted until more detailed and scientifically robust information on any potential health effects becomes apparent.

Conclusion

Telecommunication technology will continue to evolve and may be associated with future health risks. In the absence of any substantial research evidence to conclusively prove that exposure to electromagnetic fields does not pose a risk to health, precautionary measures should be implemented.

The emphasis of these measures should include policy changes that keeps pace with technological developments. This goes hand in hand with evidence-based practice and processes that educate employers and employees, aimed at minimising the potential health risks associated from prolonged electromagnetic field exposure. The findings of the airwave health monitoring study are eagerly awaited.

0

£4 billion emergency radio system ‘not yet proven’

We have been very vocal against the new ESN network, Tetra is proven and works very well, the benefits to moving over to a 4G network are attractive, but will it stand-up to a major incident? Will the network be robust enough when there are thousands of communications in a located area? These concerns have now been picked up by a commons committee, read more below….

An inquiry has revealed deep concerns about the coverage and contracting of a new £4 billion national emergency radio system.

A Commons’ Public Accounts Committee report released this month criticised the Home Office for its handling of the proposed the Emergency Services Network, or ESN.

Plans to deploy the “not yet proven” emergency radio system by December 2019 “would not be met”, the committee said. The committee also criticised the Home Office for mishandling contracts talks for ESN and failing to plan for delays, that could cost nearly £500 million alone.

“Good communications can make the difference between life and death for both emergency services personnel and the public but the technology ESN will rely on is not yet proven.”

Across the UK, 105 ambulance, fire and police services are expected to switch from their existing Airwave Solutions radio system to ESN by December 2019.

Unlike the ageing Airwave network, ESN will operate on an existing retail 4G network rather than a dedicated emergency radio network.

However, the committee said forcing emergency services to share a network with the public had not been attempted at scale.

The approach relied on much improved network coverage across the UK, including on the London Underground, and new technology to prioritise emergency services over other network users.

“Bringing together all the different elements to form an end-to-end system and scaling up these solutions and testing them adequately will be very challenging.”

The government is expected to spend £1.2 billion developing ESN, £1.4 billion running down Airwave, and further £2.6 billion operating ESN until 2032.

The contract with Airwaves, which was bought by Motorola last year, expires in December 2019. The committee said extending this contract, which will almost certainly be necessary given expected delays, will cost an additional £475 million a year.

In 2015, Motorola and EE won the user services and networks contracts respectively for ESN.

The committee also criticised the Home Office for not maintaining “competitive pressure” while awarding the contracts and leaving the winning bidders in a “very strong position” when the contract comes up for renewal in 2023.

The committee recommended the Home Officer test the new network coverage rigorously, improve its tendering, budget and plan for an Airwave contract extension and reassess its timeline for switching to the new system.

“It must take responsibility for convincing services to switch to ESN but also be clear at what point it will mandate the switchover.”

The Home Office was told to report back to the committee by September this year.

0

Software Defined Radio (SDR) Market Forecast By End-use Industry 2014-2020

We are seeing a monumental movement in the radio communication industry, as this very technical article shows the transition from hardware to software within the radio communication industry is just around the corner. With 3G and 4G providing Data and Voice Comms covering large distances, RF communication will find it hard to compete, the simple answer seems to be Tetra, but is that long term? There will always be a need for point to point communications, but larger comms infrastructures could possibly be managed in a different way.

With the evolution of digital electronics the radio market and communication technologies have evolved a lot. Though the concept of software defined radio (SDR) is not new, in the recent years, this market has undergone many changes in terms of technology and uses. SDR is a type of radio communication system where communication is carried out by the use of software on embedded system or personal computer instead of implementing hardware such as filters, amplifiers, mixers, detectors, demodulators and modulators, among others. SDR are capable of transmitting and receiving a wide spectrum of frequency. When the data from a source is converted into digital format, the remaining activities involved in radio communications are carried out with the help of software driven automated functions.

SDR optimizes the tactical information system as embedded software used in SDR helps in the dynamic selection of the communication channel. The number of digital service users is increasing resulting into the improved adoption rate of software defined radio. Public safety, military and commercial use are the three major end-use applications of SDR systems. The demand for SDRs in expected to increase in coming years owing to efficiency and cost effectiveness offered by them. The industry has undergone transformation from analog to digital. Thus, the advance capabilities of digital radio are expected to drive the growth of SDR market. Multiple regulations govern the SDR market and this affects the market growth and trends. For instance, the Federal Communications Commission (FCC) legally created a newer class for equipment of SDRs that had streamlined equipment authorization procedure.

Military modernization programs being carried out by several countries such as South Korea, India, Germany, Japan and the U.S and the interoperability provided by SDR are major driving forces for SDR market. The issues faced in the integration of the various sub systems pose a challenge to the SDR market. Further, the development of software platforms, technologies and tools, which allow flexible specification, design and implementation of radio systems, is another significant challenge. Players in software defined radio market have potential opportunity in technical advancements of SDR technology such as resolving the problem of frequency congestion, wide frequency range (spectrum) and improved broadcasting services in future.

Software defined radio market is segmented on the basis of type, end-user application and geography. On the basis of type of SDR, the market is segmented into ideal software defined radio, baseband software defined radio (BBSDR) and high frequency software defined radio (HFSDR). On the basis of end-user industry, SDR market is segmented into defense industry, telecom industry, manufacturing plants, public safety vendors and personal use. U.S. Canada, Japan, France, Brazil, South Korea, India, Germany and Italy have emerged as the leading countries for software defined radio market.

Some of the key vendors in software defined radio market are BAE Systems PLC, Elbit Systems Ltd., IndraSistemas, L3 Communications Corporation, Raytheon Co., Rohde & Schwarz GmbH & Co KG, Thales Group, Viasat Incorporated, SAAB AB, Rockwell Collins, Northrop Grumman Corp., ITT Corporation, Harris Corporation and Datasoft Corporation, among others.

This research report presents a comprehensive assessment of the market and contains thoughtful insights, facts, historical data and statistically-supported and industry-validated market data and projections with a suitable set of assumptions and methodology. It provides analysis and information by categories such as market segments, regions, product type and distribution channels.

0

The arrival of 5G, cognitive radio and the future of connectivity

We are very excited about 5G, we have already reported on how the UK emergency services are moving over to a LTE network, and inevitably 5G is the next step for better, faster and more capable communications.  Not planned to be deployed until the next decade, we believe that 5G will allow us to communicate better with our Walkie talkies. The original article can be found here.

With faster and more reliable connections, we look at what the next generation of communications could mean for business

From smart cities to the internet of things (IoT), virtually every aspect of the modern world is becoming closely connected.

The extent to which we rely on our devices and the exchange of information means new systems are needed that not only handle far greater bandwidth, but that are capable of being deployed to cover areas that were previously unreachable.

The potential benefits for business are huge, with faster and more reliable connectivity not only enhancing how firms interact with customers and each other, but also lending itself to greater flexible working among staff.

The arrival of 5G

One development that many industry observers believe could be revolutionary is 5G. Following on from 4G, the fifth-generation mobile network is in its early stages of development and is expected to be rolled out between 2020–25.

Any tech that contributes towards the next phase of mobile connectivity is covered by the term 5G. And although there are still no set standards or specifications, the GSMA – a trade body that represents global mobile operators – has outlined eight key criteria, stipulating minimum requirements for speed, capacity and energy in order for something to be considered 5G.

According to Ofcom, once operational 5G could provide between 10–50 Gbps (gigabit per seconds) in download speeds (as compared to the 5–12 Gbps of 4G), and although most experts expect it to be at the lower end of the range, that would still mean you could download an HD movie in seconds.

But rather than simply being faster than the current 4G, it will also allow more devices to access the web – an essential requirement if the IoT is to take off – meaning it could be transformative for business.

Raj Sivalingam, executive director of telecoms for techUK, the trade association for the tech sector, says: “The potential of the IoT, particularly in the enterprise environment, has been hugely debated but its impact is almost certainly still undervalued.

“Mass deployment across sectors will boost efficiency and safety with pre-emptive fault correction; enable automatic reporting of accidents and allow real-time asset tracking, reducing crime and increasing productivity, to name just a few benefits.”

One potential bottleneck for 5G is spectrum availability – or lack of it. Radio frequencies for both 3G and 4G are already overcrowded. The provision of a new bandwidth will require widespread cooperation between operators, manufacturers and governments.

Infrastructure is also an issue, says Sivalingam. “Making the leap to 5G mobile services and getting more fibre into the fixed telecommunications networks will require substantial amounts of investment.

“We need the government and industry stakeholders to work to shift the UK from good levels of connectivity to great levels so that we continue to attract investors and startups, and to foster innovation from within the UK.”

Cognitive radio

One possible solution is cognitive radio. An adaptive radio and network technology, it can sense and respond to its operating environment and automatically tune itself to the best available frequencies, this makes it more reliable in extreme locations where signals are weak, potentially providing dependable, robust connections that are not hampered by interference or geography.

Finland-based KNL Networks has developed a system using the technology that uses short wave radio to transmit internet access to sites in remote locations ranging from oil rigs to polar research stations. KNL Networks CEO Toni Linden says: “We can provide similar connectivity to those from satellites but with a terrestrial radio system. Our radios receive the whole spectrum all the time, so rather than scanning, real-time broadband receiving is going on. Thus we can see and measure everything that’s going on in the spectrum and we can maintain the network connectivity that way.”

The tech opens up the possibility of providing seamless connectivity anywhere, giving business reliable online access to markets in parts of the world that have otherwise been unreachable. It could also enable media and other companies to broadcast without the need for expensive satellites.

Quantum key distribution

It’s not just data transmission, speeds and connectivity that pose challenges in the future, but the safety of that data too. Cybercrime is ranked alongside terrorism as among the most serious threats to the UK [pdf], and with data now the lifeblood of modern business, securing that data is of paramount concern. One technology that could provide the answer is quantum communications.

Conventional encryption relies on sending a decryption key alongside your secret data. The receiver then uses that key to decode your secret information. But problems arise because hackers can also copy this key and steal your data.

Quantum key distribution (QKD) is different because it encodes this key on light particles called photons, and an underlying principle of quantum mechanics means that a hacker trying to read or copy such a key would automatically alter its state, effectively leaving a hacker fingerprint so the sender and receiver know their information security had been breached.

China recently launched a quantum satellite to further research into this technology, with the hope of developing an uncrackable communications network.

In the UK, the Quantum Communications Hub is part of a national network of four hubs led by the universities of Birmingham, Glasgow, Oxford and York. Director Tim Spiller says: “We are developing quantum communications technologies along a number of different directions, notably short-range free space QKD, where the transmitter could be in future mobile phones, and chip-to-chip QKD through optical fibre, where the chips could be in future computers and other devices.”

With two thirds of British business falling victim to cybercrime in the past year the need for better encryption is clear.

Several companies currently offer commercial quantum key distribution systems include ID Quantique, MagiQ Technologies, QuintessenceLabs, SeQureNet and Toshiba, although its high cost and limited range means mainly banks and governments are its main users, with mainstream adoption still some way off.

Spiller added: “Certainly it would be desirable to improve the size, weight, power and cost points of current technologies and our work in the hub and elsewhere is addressing all these factors.”

Paul Lee, head of technology, media, and telecommunications research at Deloitte, highlighted a number of improvements which he expected to see coming down the line, including improved mobile antennae and base stations, as well as improvements to fixed networks such as G.fast that would enable copper cable to operate at much higher speeds.

“As they get steadily faster, new services emerge to exploit these greater speeds, which then requires the deployment of even faster networks. This tail chasing has been going on for decades and won’t stop in 2017.”